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Abstract

Linear regularization is a common and robust technique for fitting multi-exponential relaxation decay data to obtain a distri-

bution of relaxation times. The regularization algorithms employed by the Uniform-Penalty inversion (UPEN) and CONTIN

computer programs have been compared using simulated transverse (T2) relaxation data derived from a typical bimodal distribution

observed in cartilage tissue which contain a component shorter than t0, the time of the first decay sample. We examined the reli-

ability of detecting sub-t0 relaxation components and the accuracy of statistical estimates of T2 distribution parameters. When the

integrated area of the sub-t0 component relative to that of the total distribution was greater than 0.25, our results indicated a signal-

to-noise threshold of about 300 for detecting the presence of the sub-t0 component with a probability of 0.9 or greater. This

threshold was obtained using both the UPEN and CONTIN algorithms. In addition, when using the second-derivative-squared

regularizer, UPEN solutions provided statistical estimates of T2 distribution parameters which were substantially free of the biasing

effect of the regularizer observed in analagous CONTIN solutions.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Multi-exponential transverse (T2) relaxation is often

encountered in relaxation studies of biological tissues and

other heterogeneous systems. One popular and robust

method of analysis makes use of various computer im-

plementations of linear regularization techniques to fit the

decay data and obtain a continuous distribution of re-

laxation components characteristic of the tissue [1–6].
In multi-exponential T2 studies of diverse biological

tissues such as muscle, cartilage, tendon, and brain, many

investigators have reported a liquid-like relaxation com-

ponent with mean T2 in the range 0.4–5ms and there is

evidence that this component may be partially associated

with protons of relatively mobile macromolecules [2,7–
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10,19,20]. This short component is generally observable
under bulk spectroscopic conditions (i.e., without spatial

localization), but under conditions of imaging or spatially

resolved spectroscopy, may be partially or wholly de-

cayed away due to longer echo times.

When fitting T2 relaxation data, it has been common

practice to exclude relaxation components that occur

below t0, the time of the first acquired spin echo [4].

However, if the signal-to-noise ratio (SNR) is high en-
ough and the time interval between the mean of the fast

T2 component and t0 is not too great, a certain amount

of extrapolation below t0 is generally allowable because

a portion of the sub-t0 relaxation component may still be

present in the earliest data points before dropping below

the noise level. Here we examine the accuracy of such an

extrapolation as well as the detectability of sub-t0
components using simulations of smooth two-compo-
nent relaxation distributions under varying conditions

of SNR and component fractional weight (i.e., inte-

grated component area relative to that of the total dis-

tribution). The simulated data were fitted using two

different regularization algorithms to find optimized
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regularization conditions. An approximate threshold for
the detection of sub-t0 components was determined and

we found that a statistical sampling of T2 decays with

similar underlying relaxation distributions provides

reasonable estimates of sub-t0 component fractional

weight and mean T2. This approach has found applica-

tion in spatially localized multi-exponential T2 mapping

of cartilage using T2-weighted microscopic MR line-

scans (J.B. Moody, unpublished data).
2. Methods

Simulated decay data were generated using condi-

tions similar to actual T2-weighted line-scan experiments

in cartilage. The simulated T2 distributions, gðT2Þ, con-
sisted of two components with mean values of 0.55 and
29ms. Each component was simulated as a gaussian

distribution of half-width (second moment) approxi-

mately 5% of the component mean [6,13]. The relatively

narrow simulated component widths were chosen on the

basis of T2 distributions from actual experimental data

in cartilage (these narrow components in cartilage may

be a consequence of the high spatial resolution and

small tissue volume (0.014mm3) represented in each
voxel of the line-scan) (J.B. Moody, unpublished data).

The initial transverse magnetization M0 (zeroth moment

of the distribution) was calculated as

M0 ¼
Z T f

2

T i
2

gðT2ÞdT2; ð1Þ

where the integration limits ½T i
2; T

f
2 � cover the range of T2

where nonzero distribution components are expected; in

all simulations, the integration limits were fixed at

[0.1ms, 1 s]. The fractional weights (zeroth moment), Pj,
of the T2 components were defined by

Pj ¼ ð1=M0Þ
Z T f

2j

T i
2j

gðT2ÞdT2; j ¼ a; b; ð2Þ

where a and b signify the shorter and longer components,

respectively, and the integration limits ½T i
2j; T

f
2j�, extend

over the T2 interval covered by the jth component. For

each simulated distribution,M0 was normalized to unity,

and Pa was varied between 0.25 and 0.75 (Pb ¼ 1� Pa).
The simulated decay data were sampled at 80 time

points by numerically integrating,

sðtkÞ ¼
Z T f

2

T i
2

gðT2Þ expð�tk=T2ÞdT2; k ¼ 1; . . . ; 80: ð3Þ

In the time domain a quasi-logarithmic sampling

scheme was used: the first approximately 40 points were

sampled at intervals of 4s (these are the first 40 even

echoes where s ¼ 0:4ms is the 90�–180� interpulse delay
of a Carr–Purcell–Meiboom–Gill (CPMG) pulse se-
quence [21]. The remainder of the data points were
sampled in approximately equally spaced intervals of

logðtkÞ such that tk was an even multiple of s. The

transition between the two sampling rates occurred at

approximately 80ms by which time the signal had de-

cayed to about 1–4% of its initial value. The total time

interval covered by the decay data was from 1.6 to 6 s

(the log-spaced portion of the sampling scheme was

generated using the full time interval, and all time points
before 80ms were discarded). Zero mean pseudo-ran-

dom noise with a gaussian distribution was added to the

simulated decay data. The variance of the noise was

adjusted so that the SNR of the simulated data varied

between 100 and 600, where SNR is the initial signal

amplitude divided by the standard deviation of the last

15% of the data points in the decay tail. Thus, the

sampling scheme allowed efficient sampling of the
baseline standard deviation at long times, while pro-

viding a sufficiently high sampling rate at short times,

within the constraint of an 80-point total decay sample.

2.1. Analysis of solutions

For each combination of SNR and Pa, a group 100

simulated data sets was generated and fitted using our
own implementation of the Uniform-Penalty (UPEN)

regularization algorithm [1] written in the Python

(www.python.org), a freely available general purpose

programming language with numeric capabilities similar

to Matlab or IDL. Identically generated simulated data

were also fitted using the Fortran program CONTIN

[11,12]. In each case, we tested two forms of the regular-

izer, the second derivative-squared and the amplitude-
squared of the solution; a non-negativity constraint was

applied in all cases [1,11]. In the calculated solutions, all

components with fractional weight greater than 1% were

included in the analysis. The solutions were evaluated in

twoways:first, theprobabilityofobtaininga solutionwith

the correct number of components (the ‘‘admissibility’’

[13]) was calculated; and second, for each distribution

component, the fractional weight (Eq. (2)) and mean T2

hT2ji ¼
Z T f

2j

T i
2j

gðT2ÞT2 dT2; j ¼ a; b; ð4Þ

were determined, as well as the mean and standard devia-

tion of these parameters over each group of 100 similar

data sets. Normality of the group data was checked with

the Shapiro–Wilk normality test [14] and the groupmeans

were compared with the true distribution parameters.
3. Results

In Figs. 1A and B, the admissibility (probability of

obtaining the correct number of relaxation components)

http://www.python.org


 
 

 
 

 
 

Fig. 2. The calculated fractional weight, Pa, of the short T2 component

as a function of Pa;true, the true fractional weight of the short T2
component, for six values of the signal-to-noise ratio (SNR). Solutions

were calculated using CONTIN (A) and UPEN (B) programs. The

plotted line represents Pa ¼ Pa;true. For CONTIN solutions (A) the

standard deviations ranged from 0.35 to 0.73 for Pa;true of 0.75 and

from 0.04 to 0.09 for Pa;true of 0.25. For UPEN solutions (B) the

standard deviations ranged from 0.13 to 0.22 for Pa;true of 0.75 and

from 0.19 to 0.23 for Pa;true of 0.25.

Fig. 1. The admissibility (probability of obtaining the correct number of

relaxation components) as a function of Pa;true, the true fractional weight
of the short T2 component, for six values of the signal-to-noise ratio

(SNR). Each point was determined from solutions of 100 simulated T2
data sets which were identical apart from added gaussian pseudo-ran-

dom noise. Solutions were calculated using CONTIN (A) and UPEN

(B) programs. The horizontal line indicates a probability of 0.9.
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as a function Pa;true is shown for CONTIN and UPEN

solutions, respectively. Similar results were seen in the
two cases: when SNR was greater than 300 and Pa
greater than 0.25, the admissibility was greater than

90%. The calculated Pa versus Pa;true is shown in

Figs. 2A and B for CONTIN and UPEN solutions,

respectively. The points are means for each group of

100 simulated data sets with given SNR and Pa;true
and the line represents Pa ¼ Pa;true. The values of Pb
from UPEN solutions are somewhat scattered sym-
metrically about the line (Fig. 2B), but values from

CONTIN solutions are all significantly underestimated

(Fig. 2A). Similarly, the calculated mean values of T2a
were consistently overestimated for CONTIN solu-

tions (Fig. 3A) (the horizontal line represents the true

T2a), but were generally closer to the true T2a for

UPEN solutions (Fig. 3B). The standard deviations of

T2a and Pa for each group of 100 simulated datasets
with fixed SNR and Pa;true were about 10% for

CONTIN solutions compared to about 30–40% for
UPEN solutions. The values of T2b for both CONTIN

and UPEN solutions were within about 0.2ms of the

true value (data not shown). Pb showed characteristics

very similar to Pa, since it is linearly dependent on Pa
(data not shown). The results shown in Figs. 1–3 were
from solutions using the second derivative-squared

regularizer; the amplitude-squared regularizer for both

UPEN and CONTIN algorithms was unable to pro-

duce accurate statistical estimates of distribution pa-

rameters (not shown). The results of the Shapiro–Wilk

normality test indicated that the statistical distribution

of all relaxation parameters (T2a, T2b, Pa, and Pb) de-

viated significantly from normality (p < 0:001).
4. Discussion

Using a model relaxation distribution with gaussian

components at 0.55 and 29ms, we simulated T2 decay



 
 

Fig. 3. The mean calculated T2a of the short T2 component as a func-

tion of Pa;true, the true fractional weight of the short T2 component, for

six values of the signal-to-noise ratio (SNR). Solutions were calculated

using (A) CONTIN and (B) UPEN programs. The plotted line rep-

resents the true value, T2b ¼ 0:55ms. For CONTIN solutions (A) the

standard deviations ranged from 0.52 to 0.97ms for Pa;true of 0.75 and

from 0.48 to 0.88ms for Pa;true of 0.25. For UPEN solutions (B) the

standard deviations ranged from 0.08 to 0.27ms for Pa;true of 0.75 and

from 0.26 to 1.2ms for Pa;true of 0.25.
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data with a range of component fractional weights and
SNR. The mean T2 of the short component was selected

to be less than t0 (¼ 1.6ms), the time of the first simulated

decay data point in order to investigate the validity and

accuracy of extrapolating the solution below t0. In gen-

eral, the T2 decay must be sampled at a rate, s�1
s ¼ T�1

2a ,

where T2a is the shortest T2 component that may occur in

the distribution, and the decay must be sampled over a

time interval covering the full range of possible relaxa-
tion components. For a typical experiment, this implies

at least 1000 decay samples over a time interval from 1ms

to 1–5 s, and an echo time, TE, between 1 and 5ms. These

sampling requirements may be relaxed somewhat if at

later times we do not acquire all echoes in the CPMG

echo-train, but only those that are spaced logarithmically

in time. This may reduce significantly the total number of

data points necessary to sample the entire decay as well as
the total acquisition time.
Signal-to-noise requirements vary depending on the
characteristics of the underlying T2 distribution; resolv-

ing two components with T2 values within a factor of

2–3 of each other may require a SNR more than an

order of magnitude higher than resolving more widely

separated components; and conversely, resolving com-

ponents with widely different fractional weights also

requires much higher SNR than equally weighted com-

ponents [6]. In our simulations the two model compo-
nents were separated by more than a factor of 50, so that

SNR was more important in determining the accuracy

of the shorter component.

One way these stringent sampling and SNR require-

ments have been achieved in vivo is by using localized

spectroscopy methods to measure multi-exponential T2
distributions in large voxels, trading spatial resolution

for temporal resolution, with echo-times on the order of
1ms [2,3]. Another approach, 1-dimensional (1-D) line-

scan imaging, retains spatial information along one

dimension, with temporal resolution intermediate

between that of spatially localized spectroscopic and

2-dimensional (2-D) imaging methods. We have used

1-D line-scan imaging to map multi-exponential T2 in

cartilage and the results will be presented in a forth-

coming article .
The UPEN algorithm, like other regularization ap-

proaches [11,13,15,16], minimizes a weighted sum of two

terms: a linear least-squares term, and a term (the reg-

ularizer) involving either the curvature (second deriva-

tive squared) or the intensity (amplitude squared) of the

solution [1]. Minimization of the first term enforces

agreement of the solution with the data while minimi-

zation of the regularizer stabilizes the solution against
variability due to noise in the data [11]. These two

competing effects are balanced by a penalty coefficient,

also called the regularization parameter, which selects

the relative weight of each term in the weighted sum [17].

The UPEN algorithm is unique compared to other

regularization approaches (such as CONTIN) in that it

uses a penalty coefficient which is a function of T2 rather
than a constant. This provides a trade-off between the
extremes of fitting the data and smoothing which varies

continuously as a function of T2, and allows relaxation

distributions with both narrow components and broad

tails to be accurately estimated [1].

In our simulations, the probability of obtaining so-

lutions with the correct number of components (‘‘ad-

missibility’’) was surprisingly high (>90%) when SNR

was 300 or better, and this was true of both regulari-
zation algorithms tested (Figs. 1A and B). However, the

estimates of mean Pa and T2a were significantly better

for UPEN solutions (Figs. 2B and 3B) compared to

CONTIN solutions (Figs. 2A and 3A). These estimates

are means of the distribution parameters for a statistical

sample of relaxation decays. Although the estimate

of T2a and Pa for any single simulated decay curve
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was likely to be inaccurate, the statistical averages for
UPEN solutions provided reasonable estimates of the

true distribution parameters. This may be applied

in multi-exponential T2 mapping approaches such as

MR line-scans, in which some spatial resolution is

maintained, or in the case of spatially localized voxel

measurements, in which a statistical sample of distinct

voxels is available [2]. For experimental data, it is crucial

that the first 1–2 data points be free of instrumental
artifacts since the estimate of T2a and Pa depends entirely
on these points.

Saab et al. [2] have reported reliable detection of a

relaxation component with T2 < 5ms in volume local-

ized CPMG measurements in human skeletal muscle,

although the uncertainties in the short component were

somewhat larger than the other four observed compo-

nents. In that study, the regularization algorithm used
was very similar to CONTIN, except that an amplitude-

squared form of the regularizer was used; s was 0.6ms,

SNR was �3500, and the observed fractional weight of

the short component was 11% [2]. In simulations they

observed that the fractional weight of the short com-

ponent was overestimated, while the mean T2 was un-

derestimated [2].

The significant non-normality of all relaxation pa-
rameters (T2a, T2b, Pa, and Pb) indicates the biasing effect

of the regularizer as well as the nonlinear relationship

between the decay data and the solution due to the non-

negativity constraints. Because the data errors are not

linearly propagated, conventional estimates of the errors

in fitted parameters based on the covariance matrix are

not generally valid [11]. Although statistically signifi-

cant, the bias was not large for the longer T2b compo-
nent, for which the uncertainty was less than 1% for

both UPEN and CONTIN solutions. However, the

much larger effects of the bias on T2a and Pa are evident
in the CONTIN solutions (Figs. 2A and 3A). The goal

of any regularization algorithm is to apply a strong

enough regularizer to find a stable solution, without

significantly biasing that solution. The form of the

T2-dependent regularizer in the UPEN algorithm is
reminiscent of the locally adaptive iterative inversion

discussed by Biemond et al. [18] in the application of

2-D regularization to image deblurring. Because the

UPEN penalty coefficient adapts to the local charac-

teristics of the solution, the algorithm is able to simul-

taneously accommodate both narrow components and

broad tails, as well as weakly (sub-t0) and strongly (e.g.,

T2b) represented components.
Although the UPEN algorithm using the second de-

rivative-squared regularizer seems to provide better

statistical estimates of very fast relaxation components,

we have observed both in simulations and in cartilage

relaxation data that the amplitude-squared regularizer

seems to do better at resolving closely spaced relaxation

components separated by a factor of 2–3. This empha-
sizes the fact that one set of regularization conditions is
unlikely to perform well in all cases, and that multiple

algorithms are necessary in order to find the best inter-

pretation of a given relaxation data set [16].

In summary, for simulated bimodal relaxation data

which contain a component shorter than t0 (the time of

the first decay sample), when SNR was greater than 300

and Pa was greater than 0.25, the probability of ob-

taining the correct number of relaxation components
was 0.9 or greater. This was obtained using both the

UPEN and CONTIN regularization algorithms. In ad-

dition, when using the second derivative-squared regu-

larizer, UPEN solutions provided statistical estimates of

relaxation distribution parameters which were substan-

tially free of the biasing effect of the regularizer which

was observed in analogous solutions found by the

CONTIN program.
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